
The Unexplored 
Magic of Reverse 
Computing

Introduction
Reverse Computing (RC) is an elusive and almost 
alien computing concept since it defines a fully 
reversible, lose-less, zero energy consumption 
classical and quantum computing device. RC has 
been hailed as a next generation platform that 
circumvents the limitation of Moore’s law, enables 
low cost quantum computing and spawns a 
multitude of innovative new technologies and 
applications. RC as per its terminology, is facilitated 
by implementation of specialised Reversible Gates 
(RG) that can persevere states of input and output 
for an undefined period of time. RG maintains 
similar thermodynamic and information entropy or 
simply put, does not loose information or generate 
heat.



Heat generation is a major stumbling block to 
enhance processor speeds as heat melts silicon. 
As per Moore’s law, a microprocessors transistor 
density doubles every 24 months achieved by 
packing more transistors in a finite amount of 
space. The higher the transistor density, the higher 
the heat produced. The density reaches a critical 
point where packing more transistors does not yield 
a higher processing throughput. This bottleneck is 
the limitation of Moore’s law which, in theory, can 
be resolved by RG as they do not generate heat 
during processing. Hence, RG and RC are all 
slated to be a silver bullet to resolve processor 
manufacturing problems, enable high speed 
quantum computing and generate major 
breakthroughs in computing and sciences.
However, we will empirically confirm that both RG 
and RC are grossly misunderstood, misinterpreted 
and incorrectly applied to classical and quantum 
computing concepts. In a series of upcoming 
papers and patents (due for release by mid 2022) 
we will clarify and argue our position by updating 
core RC terminology. Furthermore, we will also list 
updated operability guidelines via real world 
examples of RC applications.
Background
Origins of RG can be traced back to 1950 when an 
IBM researcher Rolf Landauer established a 



relationship between amount of heat generated and 
bit processing in a logical gate. His studies 
confirmed that every bit lost on output by a gate, 
generates a measurable amount of energy. This 
problem of energy dissipation is resolvable by RG 
implementation. In 1973, Charles Bennett of IBM 
explored energy neutral computers and coined the 
term, ‘adiabatic computers’. These computers 
created by RG would not generate heat and could 
run indefinitely once they are fully initialised. In 
1970s Richard Feynman theoretically proved that 
RG do not have an energy minimum and that RC is 
attainable. In 1982, Edward Fredkin and Tommaso 
Toffoli of Massachusetts Institute of Technology 
(MIT) designed the first universal reversible gate 
which could generate input from an output and 
were deployed in quantum computers. These gates 
were later used by researchers at Griffith University 
and University of Queensland, Australia to build a 
photon based quantum computer. This computer 
was the basis of a 2,000 qubit quantum computer 
that operates as an adiabatic machine at absolute 
zero.
The rationale behind RC is that a system is 
designed that does not generate heat and then 
would be:
• Energy saving device,
• Undertake high speed tasks as processing 

throughput is not restricted due to heat, and



• Enable quantum computing applications.
While heat generation is exhibited by hardware and 
logical gates, software also plays an important role. 
Tasks such as functions, calls, loops, lookups, file 
management, memory functions generate high 
levels of heat. To resolve this issue software was 
ported to being RC-friendly by development of a 
new programming language (led by Nirvan Tyagi of 
MIT in 2016) called Energy Efficient Language 
(EEL). This programming language limits the use of 
high intensity modules by replacing them with low 
overhead coding techniques. This idea of 
generating software code that could be reversed 
was led by a study in Newcastle University by Brian 
Randell in 1970. The study was to create software 
with several algorithms for same function. If one of 
the algorithm would fail to give the correct result 
then the system would go back to the pre-defined 
state and try a different algorithm. Another RC-
friendly popular method was developed by Tom 
Anderson in 1976 that led to building of an 
operating system called ‘recovery blocks’. This was 
close to fuzzy logic as it would take an input, 
compute and run the output for acceptance or 
levels of acceptability. If the acceptance level would 
not achieve a minimal threshold value then the 
system would backup to a predefined state and 
restart its computational efforts.



RC limitations:
In this introductory document and for the scope of 
this paper, the following problems point the 
direction as to why a re-work on the fundamental 
definitions of RC is required:
Energy saving for generic classical 
architecture: RC has been evolving over the years 
on the principle of achieving zero energy output 
and eventually to create an adiabatic all-purpose 
generic computing system. This is simply not 
accurate and should not be used in future 
discussions. Let us assume that we have a system 
with multiple gates and each gate does not emit a 
resultant energy. We will assume that a system 
exists with interconnected logical gates and they 
have achieved principles of zero energy and 
entropy. These gates are magical and can defeat 
the laws of physics to achieve a perfect zero sum 
energy dissipation. Such an adiabatic system does 
not assume for heat loss due to customisation in 
circuit design, attached peripheral devices as 
keyboard, mouse, video, and other chips are 
operating on the motherboard, sister boards and 
chipsets attached to internal buses. All these 
secondary devices generate heat as the gates 
cannot operate independently. Furthermore, the 
adiabatic system also does not account for memory 
leaks, Operating System (OS) functions and other 



custom or generic software routines that are 
running on the machine. Incase custom software is 
installed on the adiabatic machine, it would lead to 
additional complexities. Customised software 
designed for such a machine would be stripped and 
will have limited functionalities. Hence, a truly 
adiabatic system can only be made available for a 
single operation and a truly generic all purpose 
reversible computing device is not achievable.
Energy saving for generic quantum 
architecture: Software on quantum computers is 
not developed as a set of instructions. Instead, they 
are managed by a set of equations that accept 
input parameter(s) and computation commences 
when the system settles into a conducive state. 
This means that truly universal gates have not been 
created as generic instructions are not applicable to 
quantum computing.
Let us assume that a custom classical or quantum 
adiabatic system has been built for 64 bit operation 
to decrypt a PBKDF2 Wi-Fi password (WPA/
WPA2). To ensure that this system is truly 
adiabatic, we would need to create gates that can 
pre-calculate and store all possible inputs and 
outputs for 4 way handshake and PMKs. Without 
counting any other complexities of WiFi password 
and handshakes, the creation of all possible values 
of a 256 bit PMK would require 10⁷⁷ gates.



An Intel i9 processor is assumed have 12 billion 
transistors or 1.2¹⁰.
Apart from cramming all the gates, memory, 
storage and many more bells and whistles will be 
required to make the system truly adiabatic. This 
leads to conclusion that such a system will be 
large, energy inefficient for both classical and 
quantum.
For a decryption deployment on classical machine, 
a parallel alignment of hundreds of gates will be 
required along with advanced hardware design. 
The size and design will in itself would be not 
energy efficient.
For a decryption deployment on quantum machine, 
the system would be have to cooled to absolute 
zero and maintained at such level for long duration 
of times to achieve the result. The requirement to 
keep such a system at absolute zero for a long 
duration would never be energy efficient.
The lack of energy efficiency in both cases defeats 
the purpose of RC.
Conclusion:
The above failure cases are intended to serve as a 
starting point to convince the reader that a change 
in RC definitions are required. Without updated 
definitions we cannot unlock RC to achieve the next 
generation of computing and a promised technical 
revolution. We need to determine how to achieve a 



zero energy process in RC in classical and 
quantum realm by:
• Calculating all possible energy costs including 

tertiary sources and absolute zero cooling,
• Create soft and hard processes that may be 

stripped to create a universal series of 
instructions, and

• Achieve interoperability across platforms and 
not be limited to cracking passwords on 
quantum machines.

In our next paper we will discuss updated 
terminologies and solutions with practical examples 
in an attempt to re-define RC.


